ʻAno, hana a hoʻohana i ka electrode
ʻAno uila
Hiki ke hoʻokaʻawale ʻia nā electrodes carbonaceous i nā electrodes carbon, graphite electrodes a me nā electrodes hoʻomoʻa ponoʻī e like me kā lākou hoʻohana a me nā kaʻina hana.
Hana ʻia ka electrode kalapona i ka anthracite haʻahaʻa lehu, coke metallurgical, pitch coke a me ka petroleum coke. Hoʻokumu ʻia ia me kahi ʻāpana a me ka nui o nā ʻāpana. I ka hoʻohui ʻana, hui ʻia ka asphalt binder a me ka tar, a hoʻoulu ʻia ka hui ʻana i kahi mahana kūpono. Hoʻokumu ʻia, a hope calcining mālie i loko o kahi roaster. Hiki ke hoʻokaʻawale ʻia i nā electrodes graphite kūlohelohe, nā electrodes graphite artificial, nā electrodes kalapona a me nā electrodes kalapona kūikawā.
ʻO ka graphite electrode (graphiteelectrode) i hana ʻia me ka petroleum coke a me ka pitch coke ma ke ʻano he mea maka, a laila waiho ʻia i loko o kahi umu uila graphitized me ka mahana o 2273 ~ 2773K, a ua hana ʻia i loko o kahi graphite electrode e ka graphitization. Ua mahele hou ia ka graphite electrode i keia ano.
Hiki i ka electrode graphite mana maʻamau ke hoʻohana i nā electrodes graphite me ka nui o kēia manawa ma lalo o 17 A/cm2, a hoʻohana nui ʻia no nā umu uila mana maʻamau e like me ka hana kila, ka hoʻomaʻemaʻe silika, a me ka phosphorus melemele.
Hoʻopili ʻia ka ʻili o ka graphite electrode i uhi ʻia me ka pale pale (graphite electrode antioxidant) i conductive a kūpaʻa i ke kiʻekiʻe o ka wela wela, e hōʻemi ana i ka hoʻohana ʻana i ka electrode i ka wā o ka hana kila (19% ~ 50%) a hoʻolōʻihi i ke ola lawelawe. o ka electrode (22% ~ 60%), e hoemi ana i ka mana o ka electrode.
Hiki i ka graphite electrode kiʻekiʻe ke hoʻohana i nā electrodes graphite me ka nui o kēia manawa o 18 a 25 A / cm2, ka mea i hoʻohana nui ʻia i nā kapuahi uila uila kiʻekiʻe no ka hana kila.
Hiki i nā electrodes graphite kiʻekiʻe kiʻekiʻe ke hoʻohana i nā electrodes graphite me nā density o kēia manawa ma mua o 25 A/cm2. Hoʻohana nui ʻia i nā kapuahi uila arc uila ultra-kiʻekiʻe.
E hoʻohana ana i ka anthracite, coke, a me ka bitumen a me ka tar ma ke ʻano he mea maka, e hana ana i ka paʻi electrode i kekahi mahana, a laila e hoʻouka i ka paʻi electrode i loko o kahi pahu electrode i kau ʻia ma ka umu uila (e like me ka hōʻike ʻana. i ka FIG. 1), Ma ke kaʻina hana o ka umu uila, ʻo ka Joule wela i hana ʻia e ka hele ʻana o ke au uila a me ka wela conduction i loko o ka umu. hoʻopaʻapaʻa ponoʻī a coked. Hiki ke hoʻohana mau ʻia kēlā electrode, a hiki ke hana ʻia ma ka hui ʻana i ka ʻaoʻao ʻaoʻao lōʻihi a hiki ke puhi ʻia i kahi anawaena nui. Hoʻohana nui ʻia ka electrode bake ponoʻī no ka hana ferroalloy ma muli o kāna kaʻina maʻalahi a me ke kumu kūʻai haʻahaʻa.
Kiʻi 1 kiʻi kiʻi kiʻi o ka pūpū electrode
1-electrode shell; ʻāpana 2-rib; 3-huikolu alelo
ʻO ka hana ʻenehana nui o ka electrode
Pono nā mea electrode i nā waiwai physicochemical penei:
ʻOi aku ka maikaʻi o ka conductivity, ʻoi aku ka liʻiliʻi o ka resistivity, e hōʻemi i ka nalowale o ka ikehu uila, e hoʻemi i ka hāʻule ʻana o ka uila o ka ʻupena pōkole, a hoʻonui i ka volta maikaʻi e hoʻonui ai i ka mana o ka wai hoʻoheheʻe;
He kiʻekiʻe ka helu heheʻe;
He liʻiliʻi ka coefficient o ka hoʻonui ʻana i ka wela, ke loli wikiwiki ka mahana, ʻaʻole maʻalahi ke hoʻololi ʻia, a ʻo ke koʻikoʻi kūloko i hana ʻia e ka hoʻololi wela ʻaʻole hiki ke hana i nā māwae maikaʻi e hoʻonui ai i ke kū'ē;
Loaʻa ka ikaika mechanical i nā wela kiʻekiʻe;
He haʻahaʻa nā mea haumia a ʻaʻole hoʻohaumia nā mea haumia i ka honi.
Hōʻike ʻia nā waiwai ʻenehana nui o ka electrode carbon, ka graphite electrode a me ka electrode hoʻomoʻa ponoʻī ma ka Papa 1 a me nā Kiʻi 2 a me 3.
Papa 1 Electrode hana loea
Fig. 2 Ka hoʻololi o ka resistivity o carbon electrode a me graphite electrode me ka mahana
Figure 3 Thermal conductivity o carbon and graphite electrodes ma ke ano he hana o ka wela
Ke koho ʻana i nā electrodes i ka ʻoihana ferroalloy
Hoʻohana nui ʻia nā electrodes paʻa ponoʻī i ka hoʻoheheʻe ʻana i ka hao, hoʻomaʻemaʻe ferrosilicon, silicon chromium alloy, manganese silicon alloy, high carbon ferromanganese, high carbon ferrochrome, medium and low carbon ferromanganese, medium and low carbon ferrochrome, silicon calcium alloy, tungsten hao Kali. . Hoʻonui ʻia ka hana ʻana o nā mea hoʻoheheʻe, nā kāʻei hao i kalapona, a hana i nā mea hao a me nā metala maʻemaʻe me ka haʻahaʻa haʻahaʻa. Inā pono e hoʻohana ʻia nā kalapona ferrochrome, ka silika ʻenehana a me ka metala manganese, carbon a i ʻole graphite electrodes.
电极的种类、性能及其用途
电极种类
碳质电极按其用途及制作工艺不同可分为碳素电极、石墨电极和自焙电瞁。
碳素电极(carbonelectrode)是以低灰分的无烟煤、冶金焦、沥青焦和石油焦为原料,按一定的比例和粒度组成.混合时加入黏结剂沥青和焦油,在适当的温度下搅拌均匀后压制成形,最后在焙烧炉中缓慢焙烧制得。可分为天然石墨电极、人造石墨电极、碳电极以及特种碳素电极四类。
石墨电极(graphiteelectrode)以石油焦和沥青焦为原料制成碳素电极,再放到温度为2273〜2773K的石墨化电阻三中,经石墨化而制成石墨电极„石墨电极又分不一又分不。
普通功率石墨电极允许使用电流密度低于17A/cm2的石墨电极,主要用于炼钢、炼硅、炼黄磷等的普通功率电炉。
抗氧化涂层石墨电极表面涂覆既能导电又耐高温氧化的保护层(石墨电极抗氧化剂),降低炼钢时的电极消耗(19%〜50%),延长电极的使用寿命(22%〜60%),降低电极的电能消耗。
高功率石墨电极允许使用电流密度为18〜25A/cm2的石墨电极,主要用于炼钟的高甼钟的高甼钟
超高功率石墨电极允许使用电流密度大于25A/cm2的石墨电极。主要用于超高為玟称。
自焙电极(selfbakingelectrode)用无烟煤、焦炭以及沥青和焦油为原料,在一定温度下制成电极糊,然后把电极糊装入已安装在电炉上的电极壳中(如图1所示),在电炉生产过程中依靠电流通过时所产生的焦耳热和炉内传导热,自行烧结焦化。这种电极可连续使用,边使用边接长边给结成形,且可焙烧成大直径的。自焙电极不仅工艺简单,成本也低,因此被广泛用于铁合金生产。
图1 电极壳示意图
1-电极壳;2-筋片;3-三角形舌片
电极的主要技术性能
电极材料应具有下列物理化学特性:
导电性要好,电阻率要小,以减少电能的损失,减少短网压降,提高有效电压,他們压,从天
熔点要高;
热膨胀系数要小,当温度急变时,不易变形,不能因温度变化带来的内应力产生细小的裂缝增加电阻;
高温下要有足够的机械强度;
杂质要低,而且杂质不污染所冶炼的品种。
碳素电极、石墨电极和自焙电极的主要技术性能如表1和图2、图3所示。
表1 电极技术性能
图2 碳素电极和石墨电极电阻率随温度的变化情况
图3 碳素电极和石墨电极热导率随温度的变化情况
铁合金工业中电极的选用
自焙电极广泛用于铁合金冶炼,炼制硅铁、硅铬合金、锰硅合金、高碳锰铁、高碳铬铁、中低碳锰铁、中低碳铬铁、硅钙合金、钨铁等。自焙电极易使生产合金增碳,铁皮带入碳,生产含碳很低的铁合金和纯金属,如果碳铬铁、工业硅和金属锰应采用碳素电极或石墨电极。
Ka manawa hoʻouna: Nov-18-2019